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Abstract 

Studies looking at the metabolism in children with autism spectrum disorder have shown that each 

child examined was functionally deficient in both vitamin B2 and vitamin B12. Using lactic acid as a 

metabolic marker of glycolysis, it has been found that there is a biphasic alteration in glucose 

metabolism, which depends upon the degree of functional B2 deficiency. Initially, as functional B2 

deficiency increases, there is a blockage at the metabolism of pyruvate, with a rise in lactic acid. As 

the deficiency increases still further, there appears to be reduction in the amount of glucose 

released from stored glycogen and lactic acid levels drop. The mechanism is discussed. 

Keywords 

Autism, functional B2 deficiency, glycolysis, glycogen, lactic acid 

Introduction 

Many tests are available to the clinician to study the metabolism of a subject. Arguably, one of the 

least invasive is the Organic Acids Test (OAT), which looks at metabolites in urine. Using this test, it is 

possible to look for functional vitamin deficiencies, through studying the elevations of various 

organic acids. Hence elevations in fatty acids such as glutaric acid, suberic acid, and sebacic acid are 

indicative of functional vitamin B2 deficiency, as the short, medium and long chain acyl-CoA 

dehydrogenase are dependent upon FAD for activity. Elevations in these fatty acids are often 

accompanied by elevation in lactic acid, which becomes raised when the enzyme pyruvate 

dehydrogenase, is deficient in FAD, one of the two active forms of vitamin B2.  A more commonly 

known marker is methylmalonic acid, a marker for Adenosyl B12 deficiency (1). In addition, there are 

various neurotransmitter break-down products, such as Kynurenic acid, Quinolinic acid, and 

5Hydroxyindole acetic acid, which become elevated in methylcobalamin deficiency (1).   

Several studies have reported altered glucose metabolism in individuals with autism (2-9), however 

the mechanism has not been defined. The possibility exists that it is the known functional vitamin B2 

deficiency, commonly observed in autism, that is responsible for this altered metabolism (10) an 

attempt to elucidate the mechanism, we have examined standard urinary OAT markers and 

compared the functional vitamin B2 deficiency marker, glutaric acid, with the pyruvate 

dehydrogenase deficiency marker, lactate.  

Glucose metabolism starts following ingestion and absorption as which time, dietary glucose enters 

the circulation and is taken up via specific glucose transporters. When glucose is in excess in the 

circulation, insulin is released from the pancreas, binds to insulin receptors on appropriate cells and 

turns on inducible glucose transporters. Once inside the cell, glucose either enters the glycolysis 

pathway, or in glucose excess the glucose is polymerized and is stored as glycogen (Figure 1). 

Glucose that enters the glycolysis pathway is processed to generate 2 molecules of pyruvate, which 

in the presence of vitamin B2 (as FAD), vitamin B1 (as TPP) and lipoate, is processed by the enzyme 

pyruvate dehydrogenase to form acetyl CoA. In functional B2 deficiency, however, the pyruvate 

cannot be processed by pyruvate dehydrogenase, and is rapidly converted to lactic acid. The lactic 
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acid then down-regulates the expression of the glucose transporter and the cell can then become 

refractory to insulin. As serum glucose drops, glucose, stored as glycogen can be released to form 

glucose-1-phosphate by the action of the P5P-dependent enzyme glycogen phosphorylase. In 

functional B2 deficiency, however, Pyridoxal is not converted to Pyridoxal phosphate (P5P) and so 

glucose cannot be obtained from glycogenolysis (Figure 2). In this situation, serum glucose will be 

lower and a state of hypoglycaemia will result. Hypoglycaemia is common in children with autism (2-

8) and is often preceded by gestational diabetes in the mothers (7, 9). 

 

Figure 1. Fate of ingested glucose. In glucose deficiency, glucose enters the glycolysis pathway, and is 

processed to yield 2 molecules of pyruvate. In glucose excess, glucose is “polymerized” to form the 

storage macromolecule, Glycogen. Note the dependence of pyruvate dehydrogenase on the co-

factors TPP, FAD and lipoate. Similarly note the dependence of glycogen phosphorylase on pyridoxal-

5-phosphate. 

 

Figure 2. Fate of ingested glucose in functional vitamin B2 deficiency due to inadequate intake of 

Iodine or Selenium. In functional B2 deficiency, glucose enters the glycolysis pathway, and is 

processed to yield 2 molecules of pyruvate. Due the lack of FAD, pyruvate cannot be processed 

further, and isomerizes to lactic acid. In normal circumstances additional glucose can be released by 

glycogen phosphorylase, however, in functional deficiency of B2, there is a reduced production of 

P5P, and so Glycogenolysis is effectively blocked. 
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Methods 

We have performed a restrospective analysis of urinary organic acids from 1400 children diagnosed 

with ASD and compared the functional B2 deficiency marker, glutaric acid, with markers such as 

lactic acid, and Kynurenic Acid (a breakdown product of tryptophan), the QA:KA ratio (a surrogate 

marker for functional B6 deficiency), and succinic acid (a surrogate marker for FMN deficiency). The 

levels of these urinary organic acid markers have been compared with urinary glutaric acid. 

 

Figure 3. Altered Kynurenic acid pathway in Methylcobalamin deficiency. Production of Melatonin 

from NAcetylSerotonin, requires the S-Adenosylmethionine dependent enzyme, Hydroxy-indole-O-

methyl transferase (HIOMT) enzyme. In methyl B12 deficiency, the tryptophan metabolites 5HTP, 

Serotonin, Kynurenine, and the Kynurenine metabolites, Kynurenic acid and Quinolinic acid increase. 

Critical in the degradation of the tryptophan metabolites are pyridoxal-5-phosphate (P5P) for the 

enzyme Kynurenineaminotransferase (KAT), with P5P also being required for the synthesis of 

serotonin from 5-hyroxytrytophane. Vitamin B2 (as FAD) is also required for the degradation of 

serotonin. 

Results 

Comparison of glutaric acid (a standard marker of vitamin B2 deficiency) with levels of lactic acid in 

the urine of ASD children reveals a bi-phasic pattern, which is characterized, initially, by a large rise 

in lactic acid levels, however, as glutaric acid rises about 0.5, there is a sudden drop in levels, 

suggesting that at this point, there is insufficient activity of glycogen phosphorylase to release 

glucose from stored glycogen, and thereby process it to pyruvate with the resultant build-up of lactic 

acid (Figure 3). In support of this hypothesis, there was a similar change in the levels of Kynurenic 

acid and the QA:KA ratio (markers of functional B6 deficiency) (Figs 4 and 5)  

 

Figure 3. Comparison of urinary glutaric acid (x axis) with lactic acid levels (y axis). 

There are a number of other markers that associated with low functional vitamin B2 that 
show a similar profile to that for lactic and glutaric. 
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Figure 4. Comparison of urinary glutaric acid (x axis) with Kynurenic acid levels (KA; y axis). 

 

Figure 5. Comparison of urinary glutaric acid (x axis) with the QA:KA ratio (y axis) 

Metabolism of succinic acid in the citric acid cycle is dependent upon the FMN-dependent 
enzyme succinate dehydrogenase and the activity of the enzyme decreases as FMN levels 
drop, and there is a resultant increase in urinary succinic acid (Figure 6). 

 

Discussion. 

Hypoglycaemia is common in autism (11-13), however, the mechanism does not appear to be 

understood. Examination of OAT data from over 1400 children has shown that they are all 

functionally deficient in both vitamin B2 (10) and vitamin B12 (1, 14-17). The data presented above 

would support the notion that it is the functional vitamin B2 in autism that causes the 

hypoglycaemia. Hence if functional B2 is sufficiently bad, then metabolism of glucose via glycolysis is 

reduced, and release of glucose from glycogen is also reduced. This would then be associated with 
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poor energy metabolism in the brains of the children with autism, compounding the observed 

developmental delay. Analysis of “mean” serum glucose levels may not reveal these correlations as 

the elevated lactic acid would be "normalized" by the much lower lactic acid seen in extreme 

functional B2 deficiency. Potentially, given that storage of glycogen is an important back-up energy 

source in the brain, these children would have much lower energy conversion in the brain, which 

would then be “starved” of energy, potentially contributing to the developmental delay seen in 

these children. These findings could potentially mean that in those individuals with extreme 

functional B2 deficiency, there is the potential for these children to develop glycogen storage 

disease if untreated.  

Summary 

A common feature of children with autism is that they can be shown to be metabolically deficient in 

functional vitamin B2, with the result that they have a reduced ability to process fats, sugars and 

protein for energy. The effect on glucose metabolism appears to be related to the extent of 

deficiency that the children have. Hence in moderate functional B2 deficiency, metabolism of 

glucose via the glycolysis pathway is restricted with the result that urinary lactic acid levels rise. In 

severe deficiency, however, the metabolism of stored glycogen is affected such that glucose is not 

released from glycogen stores, and so interprandial blood glucose levels are reduced, resulting in 

hypoglyaecemia in these individuals. Potentially this then contributes to the state of mental delay 

seen in these children. 
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